Evaluation and Modeling of Small Rooms

Éva Arató-Borsi, Tamás Póth
Hungarian Radio, Budapest

Andor T. Fürjes
Technical University of Budapest
Contents

Introduction

Evaluation of small rooms
 Subjective tests
 Objective parameters

Modeling of small rooms
 Validation
 Application

Conclusions
Introduction

Small rooms

Special requirements:
reference listening rooms, technical rooms, …

Special circumstances:
acoustical treatment, small size, equipment, …

Objective

Subjective/objective characterization

Optimized design and modeling method
Evaluation

- Parameters in recommendations
 ... are not thorough enough,
 new parameters are needed

- Developing new objective parameters
 subjective tests correlations?
 measurements correlations?

- Proposed objective parameters
 ... from measure impulse responses
 ... based on energy-time integrals
Objective Parameters that Correlated

“k₁” or “k₂” ~ “stereo accuracy, spatial impression”

\[
k₁(t) = \log_{10} \frac{\int_{0}^{t} p^2(\tau) d\tau}{\int_{0}^{\infty} p^2(\tau) d\tau}
\]

k₂(t) = \log_{10} \frac{\int_{0}^{t} p^2(\tau) d\tau}{\int_{0}^{\infty} p^2(\tau) d\tau}

“M” ~ “timbre” \quad M = k₂(20ms) - k₂(5ms)

“tₛ” ~ “transparency” \quad tₛ = \frac{\int_{0}^{\infty} t \cdot p^2(\tau) d\tau}{\int_{0}^{\infty} p^2(\tau) d\tau}
Modeling of Small Rooms

Methods

Statistical: global, coarse approximation \(<\) small rooms

Numerical (FEM, BEM, etc.): elaborate, though computationally extensive (mesh resolution)

Geometrical acoustics:

easy to use and understand, but limited (low frequency, small rooms)

Chosen method: triangular beam-tracing (TBM)
Validation of TBM

- Comparison of measured and modeled data
 Parameters based on energy decay curves (EDC)

- Errors of the model
 Directional characteristics of source-receiver
 Incomplete knowledge of the properties of surfaces
 Limitations of TBM (geometry, diffusion, diffraction, etc.)

- Inverse validation
 Assumption: greatest error due to parameter errors
Inverse Calculations

- EDC fitting
- Measured EDC
- Modeled reflection timings
- Echogram amplitudes
 - carpet
- Absorption coefficients
Application of EDC fitting

Objective parameters define an “ideal” EDC

Calculating required parameters in the model

… distribution of absorptive and reflective surfaces

… directional characteristics of source-receiver

… possible errors of geometry
Application of EDC fitting - example

Design of shoebox for given k_1 and T_{60}
Conclusions

- New objective parameters
- Examining validity of modeling with TBM
- Design of EDC, based on the new parameters

Future...

- Other parameters (binaural?)
- Verification of EDC methods in practice
A1: Calculating absorption from echogram

\[
(1 - \alpha_1)^{M_{1,1}} \cdot (1 - \alpha_2)^{M_{1,2}} \cdots (1 - \alpha_N)^{M_{1,N}} = A_1
\]

\[
\vdots
\]

\[
(1 - \alpha_1)^{M_{K,1}} \cdot (1 - \alpha_2)^{M_{K,2}} \cdots (1 - \alpha_N)^{M_{K,N}} = A_K
\]

corrected amplitude of k-th reflection

absorption coeff. of n-th surface